A Variable-density Projection Method for Interfacial Flows
نویسندگان
چکیده
General second-order, variable-density, three-step and four-step projection methods are developed to simulate unsteady incompressible interfacial flows. A high-accuracy, variabledensity RKCN projection method is presented, in which the three-stage, low-storage RungeKutta technique and second-order semi-implicit Crank-Nicholson technique are employed to temporally update the convective and diffusion terms, respectively. To reduce computation cost, a simplified version of the projection method is also presented, in which the pressure Poisson equation (PPE) is solved only at the last substage. The level set approach is employed to implicitly capture the interface for falling droplet flows. Three-dimensional bubble rising flows and two-dimensional falling droplet flows in a small closed channel are studied numerically via the present method. By the definition of the effective pressure, the flow mechanisms for falling droplet flows with different density ratios, viscosity ratios, Weber numbers, and Reynolds numbers are discussed.
منابع مشابه
A Kinematics Scalar Projection Method (KSP) for Incompressible Flows with Variable Density
A new scalar projection method presented for simulating incompressible flows with variable density is proposed. It reverses conventional projection algorithm by computing first the irrotational component of the velocity and then the pressure. The first phase of the projection is purely kinematics. The predicted velocity field is subjected to a discrete Hodge-Helmholtz decomposition. The second ...
متن کاملA fourth-order auxiliary variable projection method for zero-Mach number gas dynamics
A fourth-order numerical method for the zero-Mach-number limit of the equations for compressible flow is presented. The method is formed by discretizing a new auxiliary variable formulation of the conservation equations, which is a variable density analog to the impulse or gauge formulation of the incompressible Euler equations. An auxiliary variable projection method is applied to this formula...
متن کاملAn adaptive pressure correction method without spurious velocities for diffuse-interface models of incompressible flows
In this article, we propose to study two issues associated with the use of the incremental projection method for solving the incompressible Navier-Stokes equation. The first one is the combination of this time splitting algorithm with an adaptive local refinement method. The second one is the reduction of spurious velocities due to the right-hand side of the momentum balance. We propose a new v...
متن کاملA time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios
We present an efficient time-stepping scheme for simulations of the coupled Navier– Stokes Cahn–Hilliard equations for the phase field approach. The scheme has several attractive characteristics: (i) it is suitable for large density ratios, and numerical experiments with density ratios up to 1000 have been presented; (ii) it involves only constant (time-independent) coefficient matrices for all...
متن کاملVector and scalar penalty-projection methods - for incompressible and variable density flows
This work deals with the solution of Navier-Stokes equations governing incompressible flows with variable density, e.g. [10], or dilatable flows for which the Boussinesq approximation is no more valid like low Mach number flows, e.g. [5]. In these cases, the divergence constraint makes the fully-coupled system to solve at each time step for the velocity and dynamic pressure very ill-conditioned...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003